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Abstract—Neural fields have revolutionized the area of 3D reconstruction and novel view synthesis of rigid scenes. A key challenge in
making such methods applicable to articulated objects, such as the human body, is to model the deformation of 3D locations between
the rest pose (a canonical space) and the deformed space. We propose a new articulation module for neural fields, Fast-SNARF,
which finds accurate correspondences between canonical space and posed space via iterative root finding. Fast-SNARF is a drop-
in replacement in functionality to our previous work, SNARF, while significantly improving its computational efficiency. We contribute
several algorithmic and implementation improvements over SNARF, yielding a speed-up of 150×. These improvements include voxel-
based correspondence search, pre-computing the linear blend skinning function, and an efficient software implementation with CUDA
kernels. Fast-SNARF enables efficient and simultaneous optimization of shape and skinning weights given deformed observations
without correspondences (e.g. 3D meshes). Because learning of deformation maps is a crucial component in many 3D human avatar
methods and since Fast-SNARF provides a computationally efficient solution, we believe that this work represents a significant step
towards the practical creation of 3D virtual humans.

F

1 INTRODUCTION

3D avatars are an important building block for many
emerging applications in the metaverse, AR/VR and be-
yond. To this end, an algorithm to reconstruct and animate
non-rigid articulated objects, such as humans, accurately
and quickly is required. This challenging task requires mod-
eling the 3D shape and deformation of the human body
– a complex, articulated, non-rigid object. We consider the
scenario in which training data, in the form of 3D scans,
is available and we model the deformable shape of the
human in a canonical space that can be transformed into the
posed observation space. For such techniques to be widely
applicable, it is paramount that algorithms can learn from
3D scans of people in arbitrary poses without requiring pre-
computed correspondence between the input scans. There-
fore, inferring the transformation that 3D locations undergo
between the posed observation space and some canonical
space is the key challenge to attain a model that can be
animated.

Static shape modeling has recently seen much progress
with the advent of neural fields [39, 42, 43, 49]. Such rep-
resentations are promising due to their ability to represent
complex geometries of arbitrary topology, at arbitrary res-
olution, by leveraging multi layer perceptrons (MLPs) to
encode spatial quantities of interest (e.g. occupancy prob-
abilities) in 3D space. Recent work [43] has further achieved
fast reconstruction and real-time view synthesis of rigid
scenes with high quality. However, to enable fast non-rigid
reconstruction and realistic animation of articulated objects,
a robust and fast articulation module is needed.

Articulation of neural fields is typically modeled via de-
formation of 3D space, which warps neural fields from a rest
pose (canonical space) into any target pose (posed space),
leveraging dense deformation fields. Several techniques
have been proposed to construct such deformation fields.
Building upon traditional mesh-based linear blend skinning
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Fig. 1: Fast-SNARF for Articulated Neural Fields. Fast-
SNARF finds accurate correspondences between canonical
space and posed space while being 150× faster than our pre-
vious method SNARF [12]. Fast-SNARF enables optimizing
shape and skinning weights given deformed observations
without correspondences (e.g. 3D meshes).

(LBS) [26], several works [27, 41, 50, 59, 64] learn dense
skinning weight fields in posed space and then derive the
deformation fields via LBS. While inheriting the smooth de-
formation properties of LBS, the resulting skinning weight
fields cannot generalize to unseen poses, because they are
pose-dependent, and changes in pose lead to drastic changes
to the spatial layout of the deformation field. These changes
have not been observed at training time for unseen poses.
Another line of work approximates the mapping as piece-
wise rigid transformations [16, 45], which suffers from dis-
continuous artifacts at joints. The mapping could also be
approximated based on a skinned base mesh [24], which
can lead to inaccuracies due to the mismatch between the
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base mesh and the actual, observed, shape. Additionally,
this approach takes the skinning weights from the nearest
neighboring point on the base mesh. This leads to ambigu-
ities when the mesh is in self-contact, producing erroneous
nearest-neighbor associations.

Our recent work, SNARF [12], overcomes these problems
by design in that it learns a skinning weight field in canoni-
cal space that is pose-independent. This formulation produces
natural deformations due to the smooth deformation prop-
erties of LBS and generalizes to unseen poses because of the
pose-independent canonical skinning weights. Furthermore,
in contrast to previous methods [27, 41, 50, 59, 64], pose-
independent skinning weights can be learned unsupervised,
i.e. without the need for ground-truth skinning weights or
other forms of annotations.

However, a major limitation of SNARF is the algorithm’s
computational inefficiency. While learning a canonical skin-
ning weight field enables generalization, the deformation
from posed to canonical space is defined implicitly, and
hence can only be determined numerically via iterative root
finding. The efficiency of the operations at each root finding
iteration plays a critical role in the speed of the overall
articulation module. Therefore, computationally expensive
operations in SNARF, such as computing LBS and evalu-
ating the skinning weight field, parameterized by an MLP,
lead to prohibitively slow speed – learning an animatable
avatar from 3D meshes takes 8 hours on high-end GPUs.

In this paper, we propose Fast-SNARF, an articulation
module that is fast yet preserves the accuracy and robust-
ness of SNARF. We achieve this by significantly reducing
the computation at each root finding iteration in the ar-
ticulation module. First, we use a compact voxel grid to
represent the skinning weight field instead of an MLP. The
voxel-based representation can replace MLPs without loss
of fidelity because the skinning weight field is naturally
smooth, and is pose-independent in our formulation. In
addition, exploiting the linearity of LBS, we factor out LBS
computations into a pre-computation stage without loss of
accuracy. As a result, the costly MLP evaluations and LBS
calculations in SNARF are replaced by a single tri-linear
interpolation step, which is lightweight and fast. Together
with a custom CUDA kernel implementation, Fast-SNARF
can deform points with a speed-up of 150x w.r.t. SNARF
(from 800ms to 5ms) without loss of accuracy.

In our experiments, we follow the setting of SNARF and
learn an animatable avatar, including its shape and skinning
weights, from 3D scans in various poses, represented by
a pose-conditioned occupancy field parameterized by an
MLP. The overall inference and training speed, including
both articulation and evaluation of the canonical shape MLP,
is increased by 30× and 15× respectively. Note that the
speed bottleneck is shifted from articulation (in SNARF) to
evaluating the canonical shape MLP (in Fast-SNARF). Fast-
SNARF is also faster than other articulation modules and is
significantly more accurate, as we show empirically. While
we focus on learning occupancy networks, Fast-SNARF can
support other neural fields in the same manner that SNARF
and its variants have been utilized [28, 31, 66, 73].

We hope Fast-SNARF will accelerate research on articu-
lated 3D shape representations and we release the code on

our project webpage 1 to facilitate future research.

Relation to SNARF [12]: This paper is an extension of
SNARF [12], a conference paper published at ICCV’21,
which models articulation of neural fields. This paper ad-
dresses the main limitation of SNARF, i.e. its computational
inefficiency via a series of algorithmic and implementation
improvements described in Section 4. We provide a speed
and accuracy comparison of Fast-SNARF with SNARF and
other baseline methods, and thorough ablation studies in
Section 4.2.

2 RELATED WORK

2.1 Rigid Neural Fields

Neural fields have emerged as a powerful tool to model
complex rigid shapes with arbitrary topology in high fi-
delity by leveraging the expressiveness of neural networks.
These neural networks regress the distance to the sur-
face [49], occupancy probability [39], color [47] or radi-
ance [42] of 3D points. Conditioning on local information
such as 2D image features or 3D point cloud features
produces more detailed reconstructions than using global
features [13, 20, 52, 57, 58]. Such representations can be
trained with direct 3D supervision, e.g. ground truth oc-
cupancy or distance to the surface, or can be trained indi-
rectly with raw 3D points clouds [3, 7, 19, 59, 69] or 2D
images [42, 44, 61, 70].

Fast Rigid Neural Fields: One major limitation of neural
field representations is their slow training and inference
speeds, mainly due to the fact that multiple evaluations
of deep neural networks are necessary to generate images
and each of these evaluations is time-consuming. Several ap-
proaches have recently been proposed to improve the train-
ing [9, 33, 43, 60, 62, 63] and inference speed [18, 22, 54, 71].
The core idea is to leverage explicit representations [52],
such as voxel grids or hash tables, to store features for a
sparse set of points in space. The dense field can then be ob-
tained by interpolating sparse features and by decoding the
features using neural networks. Instead of point locations,
these networks take features as input, which are more infor-
mative, enabling the network to be shallow and hence more
computationally efficient. However, the underlying explicit
representations have a fixed spatial layout that limits these
methods to rigid shapes.

Our proposed articulation module can deform rigid neu-
ral fields to enable non-rigid animation at inference time
and enable learning from deformed observations during
training. Importantly, our module runs at a comparable
speed to recent fast rigid neural field representations (e.g.
[43]) and is thus complementary to advancements made in
accelerating neural fields.

2.2 Articulation of Neural Fields

Recently, several articulation algorithms for neural fields
have been proposed. These methods serve as a foundation
for many tasks such as generative modeling of articulated
objects or humans [4, 11, 15, 23, 46, 72], and reconstructing

1. https://github.com/xuchen-ethz/fast-snarf
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animatable avatars from scans [12, 16, 32, 40, 41, 59, 64],
depth [17, 48, 65], videos [10, 28, 30, 31, 34, 45, 51, 53, 66, 67,
73] or a single image [21, 24, 68]. Compared to mesh-based
representations, articulated neural fields naturally model
varied topology in various body poses, and can be applied
on articulated objects of different categories or humans
in different clothing styles without requiring customized
templates. In the following, we discuss existing approaches
to articulating neural fields.

Part Based Models: One option is to model articulated
shapes as a composition of multiple parts [16, 40, 45].
Rigidly transforming these parts according to the input
“bone” transformations produces deformed shapes. While
preserving the global structure after articulation, the conti-
nuity of surface deformations is violated, causing artifacts
at the intersections of parts. Moreover, inferring the correct
part assignment from raw data is challenging and typically
requires ground-truth supervision.

Backward Skinning: Another line of work [27, 41, 59, 64]
learns skinning weight fields in deformed space and then
derives the backward warping field using LBS to map points
in deformed space to canonical points. Such methods are
straightforward to implement but inherently suffer from
poor generalization to unseen poses. Backward deformation
fields are defined in deformed space and, hence, inher-
ently deform with the pose. Existing methods train pose-
conditioned MLPs to predict such deformation fields. These
deformations can be complex and the mapping from hu-
man pose to deformations is very high-dimensional. Small
changes in the input pose can produce large changes in
output skinning weights, making it difficult to generate
deformations that have not been seen during training.
Learning such pose-dependent skinning weight fields is also
challenging, thus existing methods often rely on strong su-
pervision via ground-truth skinning weights. Moreover, due
to the varying spatial configuration, such pose-dependent
skinning weights cannot be modeled using acceleration data
structures such as explicit voxel grids.

Forward Skinning: Learning the skinning weights in canon-
ical space instead of deformed space is a natural way
to resolve the generalization issue. However, deriving the
mapping from deformed to canonical points with canonical
skinning weights is not straightforward, because the skin-
ning weights of the deformed query points are unknown.
Thus, SNARF [12] attains this mapping using an iterative
root finding formulation, which finds the canonical points
that are forward-skinned to the deformed query location.
This formulation enables the articulation of neural fields
into arbitrary poses, even those unseen during training. The
pose-independent canonical skinning weights as well as the
canonical shape can be jointly learned unsupervised without
the need for ground-truth skinning weights or shape, avoid-
ing the manual effort needed to define skinning weights
and implicitly solving the challenging problem of canoni-
calizing posed observations. Moreover, multiple canonical
correspondences can be found using such methods, which
is important to handle self-contact. This forward skinning
formulation has already found widespread use in many
tasks, such as generative modeling [11], or personalized

avatar reconstruction from scans [32], depth [17], or im-
ages [28, 31, 66, 73].

However, one major limitation of this formulation is its
slow speed due to the expensive computation at each root
finding iteration. The original SNARF model relies on an
MLP to parameterize the skinning weight field. At each
root finding iteration, SNARF requires evaluation of the
MLP to compute LBS weights, which is time-consuming.
This limitation is further amplified when combining for-
ward skinning with rendering algorithms that require many
queries along many rays (cf. [14]). To reduce computation
time, existing methods [28, 66] use an explicit mesh to
tighten the search space of root finding. However, these
methods introduce the overhead of mesh extraction and still
require days of training time to learn avatars from images.

We address this problem by using a voxel-based param-
eterization of the skinning weight field and by factoring out
the LBS computation into a pre-computation stage. Since
Fast-SNARF does not require mesh extraction in the training
loop, it is more versatile and much faster to train than
methods that rely on meshes (e.g. [28]) (minutes vs. days).
Our method also enables learning the skinning weights.

3 DIFFERENTIABLE FORWARD SKINNING

In this section, we briefly summarize the differentiable for-
ward skinning approach proposed in SNARF [12]. We then
discuss Fast-SNARF in Section 4.

General Pipeline: Figure 2 illustrates the general pipeline
for modeling articulated neural fields. Given a query point
in posed space, an articulation module first finds its corre-
spondences in canonical space according to the input body
pose. Then the canonical shape properties are evaluated
at the correspondence locations. When multiple correspon-
dences exist, multiple values of these properties are pre-
dicted and aggregated into one value as the final output.

Canonical Neural Fields: Canonical shape properties can be
modeled using any coordinate-based representation, e.g. oc-
cupancy fields [39] or radiance fields [42]. For convenience,
we follow SNARF and use occupancy fields as an example.
The occupancy field in SNARF [12] is defined as

fσf : R3 × Rnp → [0, 1], (1)
x,p 7→ o. (2)

Here fσf is the occupancy field that predicts the occupancy
probability o for any canonical point x. The parameters of
the occupancy field are denoted as σf . It can be option-
ally conditioned on the articulated pose p to model pose-
dependent local deformations such as clothing wrinkles.

Neural Blend Skinning: In SNARF, the articulation is mod-
eled using LBS. To apply LBS to continuous neural fields, a
skinning weight field in canonical space is defined as:

wσw : R3 → Rnb , (3)

where σw are the parameters and nb denotes the number of
bones. In SNARF, this field is parameterized as an MLP.
However, any other coordinate-based representation can
be used instead. Given the skinning weights w of a 3D
point x and the bone transformations B = {B1, . . . ,Bnb}
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Fig. 2: General Framework for Articulated Neural Field Representations. Given a query point, x′, in deformed space and
the input pose (represented as joint angles p and 6D transformations B), an articulation module first finds its canonical
correspondences x∗. The canonical shape representation fσf then outputs the occupancy probabilities or densities at {x∗}
which are finally aggregated to yield the occupancy probability or density of the query point x′.

(Bi ∈ SE(3)) that correspond to a particular body pose p,
the 6D transformation T(x) ∈ R3×4 of a canonical point is
determined by the following convex combination:

T(x) =

nb∑
i=1

wσw,i(x) ·Bi. (4)

The deformed point corresponding to the canonical
point is then computed as

x′ = dσw (x,B) = T(x) · x. (5)

Correspondence Search: The canonical skinning weight
field and Eq. (5) define the mapping from canonical points
to deformed ones, i.e. x → x′. However, generating posed
shapes requires the inverse mapping, i.e. x′ → x, which is
defined implicitly as the root of the following equation:

dσw (x,B)− x′ = 0. (6)

The roots of this equation cannot be analytically solved in
closed form. Instead, the solution can be attained numer-
ically via standard Newton or quasi-Netwon optimization
methods, which iteratively find a location x that satisfies
Eq. (6) (see Fig. 3):

xk+1 = xk − (Jk)−1 · (dσw (xk,B)− x′). (7)

Here J is the Jacobian matrix of dσw (xk,B) − x′. To avoid
computing the Jacobian at each iteration, Broyden’s method
[6] and low-rank approximation J̃ of J−1 is used.

Handling Multiple Correspondences: Multiple roots, de-
noted by the set {x∗i }, might exist due to self-contact where
multiple canonical correspondences of one deformed point
exist (see green and blue points in Fig. 2). Multiple roots
are found by initializing the optimization-based root finding
procedure with different starting locations and exploiting
the local convergence of the optimizer. The initial states
{x0

i } are obtained by transforming the deformed point x′

rigidly to the canonical space for each of the nb bones, and
the initial Jacobian matrices {J0

i } are the spatial gradients of
the skinning weight field at the corresponding initial states:

x0
i = B−1i · x′ J0

i =
∂dσw (x,B)

∂x

∣∣∣∣
x=x0

i

(8)

The final set of correspondences is determined by their

convergence:

X ∗ = {x∗i | ‖dσw (x∗i ,B)− x′‖2 < ε} , (9)

where ε is the convergence threshold.

Aggregating Multiple Correspondences: Taking the max-
imum of multiple implicit functions is a standard operator
for composing multiple independent implicit shapes into a
single one [55, 56]. In our case, each correspondence can
be considered as belonging to an independent shape (body
part). Thus, the maximum over the occupancy probabilities
of all canonical correspondences gives the final occupancy
prediction:

o′(x′,p) = max
x∗∈X∗

{fσf (x∗,p)}. (10)

Intuitively, a deformed point is unoccupied only if all of its
canonical correspondences are unoccupied.

Losses: The canonical neural fields and the skinning weights
can be learned jointly from observations in the deformed
space. SNARF assumes direct 3D supervision and uses the
binary cross entropy loss LBCE(o(x

′,p), ogt(x
′)) between the

predicted and ground-truth occupancy for any deformed
point. In addition, two auxiliary losses are applied during
the first epoch to bootstrap training. SNARF randomly sam-
ples points along the bones that connect joints in canonical
space and encourages their occupancy probabilities to be
one. Moreover, SNARF encourages the skinning weights
of all joints to be 1 for their parent bones. These two
bootstrapping losses are derived from the skeleton only,
which is easy to create in practice and can be shared across
different subjects, unlike shape and skinning weights which
vary across subjects wearing different clothing. In particular,
for human subjects, the skeleton of a minimally clothed
SMPL model is sufficient to learn the shape and skinning
weights of different clothed humans, without any manual
effort needed to re-define the skeleton.

Gradients: To learn the skinning weights wσw using a loss
applied on the predicted occupancy probability in posed
space L(o(x′,p)), the gradient of L w.r.t. σw is required.
Applying the chain rule, the gradient ∂L

∂σw
is given by

∂L
∂σw

=
∂L
∂o
· ∂o

∂fσf
·
∂fσf (x

∗)

∂x∗
· ∂x

∗

∂σw
, (11)
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Fig. 3: MLP-based Forward Skinning (SNARF). Given a
point in deformed space x′, SNARF finds its canonical corre-
spondences x∗ that satisfy the forward skinning equation (5)
via root finding. Multiple correspondences can be reliably
found by initializing the root finding algorithm with multi-
ple starting points derived from the bone transformations.

where x∗ is the root as defined in Eq. (9)
The last term cannot be obtained using standard auto-

differentiation because x∗ is determined by the iterative cor-
respondence search using σw. This iterative procedure is not
trivially differentiable. To overcome this problem, implicit
differentiation is used to derive the following analytical
form of the last term:

∂x∗

∂σw
= −

(
∂dσw (x

∗,B)

∂x∗

)−1
· ∂dσw (x

∗,B)

∂σw
. (12)

Substituting Eq. (12) into Eq. (11) yields the gradient term
∂L
∂σw

which then allows skinning weights to be learned with
standard back-propagation.

4 FAST DIFFERENTIABLE FORWARD SKINNING

While the formulation mentioned above can articulate neu-
ral fields with good quality and generalization ability, the
original SNARF algorithm is computationally expensive,
which limits its wider application. As a reference, deter-
mining the correspondences of 200k points takes 800ms on
an NVIDIA Quadro RTX 6000 GPU. In the following, we
describe how Fast-SNARF overcomes this issue, reducing
the computation time from 800ms to 5ms (Table 2).

4.1 Voxel-based Correspondence Search

The core of our fast method involves factoring out costly
computations at each root finding iteration in SNARF, in-
cluding MLP evaluations and LBS calculations, by putting
these into a pre-computation stage as illustrated in Algo-
rithm 1. Figure 5 graphically illustrates the cost of each key
algorithm block in Fast-SNARF.

Voxel-based Skinning Field: The main speed bottleneck
of SNARF lies in computing Eq. (7) at each iteration of
Broyden’s method. Computing Eq. (7) is time-consuming
because it involves querying skinning weights, which are
parameterized via an MLP in SNARF, and then computing
LBS. We notice that the skinning weight field does not
contain high-frequency details as illustrated in Fig. 7. There-
fore, we re-parameterize the skinning weight field w with
a low-resolution voxel grid {wv} with skinning weights
wv defined for each grid point xv . The skinning weights
of any, non-grid aligned point in space are then obtained
via tri-linear interpolation. We find that a resolution of
64 × 64 × 16 is sufficient to describe the skinning weights
in all experiments. Note that we use lower resolution along

the z-axis due to the “flatness” of the human body along
this dimension in canonical space.

We choose a voxel representation over other neural field
representations for computational efficiency. Querying a
value from a voxel grid requires fewer read operations (8 for
tri-linear interpolation) compared to multi-resolution hash
tables [43] (8 × L for a L-level table) and tri-planes [8, 52]
(4×3) and does not require running additional MLPs. While
voxel-based representations are less memory efficient, this is
not critical in our case since skinning weights are naturally
smooth and can be well represented by a low-resolution
grid.

Pre-computing LBS: Computing linear blend skinning
(Eq. (14)) at each root finding iteration also impacts speed.
We notice redundancy in the computation and hence pro-
pose a pre-computation scheme to improve efficiency. Simi-
lar to Eq. (14), the linearly blended skinning transformation
of a canonical point with voxel-based skinning weights is
given as

T(x) =

nb∑
i=1

wi(x) ·Bi

=

nb∑
i=1

trilerp(wv0,i, . . . , wv7,i,x) ·Bi, (13)

where v0, . . . v7 are the 8 neighbouring grid points of x. Since
tri-linear interpolation is a linear operation w.r.t. the values
at grid points, the equation above can be rewritten as

T(x) =

nb∑
i=1

A(x) · [wv0,i . . . wv7,i]T ·Bi

= A(x) ·
nb∑
i=1

[wv0,i . . . wv7,i]
T ·Bi

= A(x) · [
nb∑
i=1

wv0,iBi . . .

nb∑
i=1

wv7,iBi]
T

= A(x) · [Tv0 . . .Tv7 ]
T (14)

where Tv are the linearly blended transformations of neigh-
bouring grid points. Our explicit voxel-based skinning
weights representation {wv} allows us to compute the
transformations for all grid points {Tv} given current body
poses:

Tv =

nb∑
i=1

wv,i ·Bi. (15)

Then, during root finding, the required transformation at
any canonical point T(x) can be determined by tri-linearly
interpolating neighbouring transformations in {Tv}. Thus,
LBS only needs to be run for a small set of grid points
instead of all query points in the root-finding procedure.

Custom CUDA Kernel: Broyden’s method is iterative and
involves many small operations that have to be computed
per query point, such as arithmetic operations on small
matrices and reading values from the voxel grid. We note
that these operations can be computed in an independent
manner. This motivates us to implement this module with
a custom CUDA kernel instead of using native functions in
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Fig. 4: Voxel-based Forward Skinning (Fast-SNARF). In
comparison with SNARF (cf. Fig. 3), Fast-SNARF uses a
voxel-based representation to speed up the iterative corre-
spondence search. The skinning weight field is represented
as a voxel grid. For each pose, we first pre-compute LBS
for each grid point, yielding a transformation field. For each
query deformed point x′, Fast-SNARF finds its canonical
correspondences x∗ which satisfy T(x∗) · x∗ = x′.

Pre-computation
0.3ms

4.8ms
Root-finding

Remove Duplicate Correspondences
0.2ms

28ms
Shape MLP Query

Aggregate Multiple Correspondences
0.4ms

Fig. 5: Runtime Profile. We show the computation time of
major algorithm blocks in Fast-SNARF.

standard deep learning frameworks. The handwritten ker-
nel, parallelized over query points, fuses the entire method
into a single kernel that keeps working variables in registers,
avoiding unnecessary time and memory costs from launch-
ing native kernels and synchronizing intermediate results.
The input to our CUDA kernel for iterative root finding is
the pre-computed voxel grid of transformations {Tv}, the
bone transformations B as well as query points x′. The ker-
nel first computes the multiple initialization states (Eq. (8)).
Then, at each root finding iteration, the kernel tri-linearly
interpolates {Tv} and transforms the points (Eq. (5)), and
applies Broyden’s update (Eq. (7)). After each iteration k,
we filter diverged and converged points xk by checking
whether

∥∥dσw (xk,B)− x′
∥∥
2

is larger than the divergence
threshold or smaller than the convergence threshold, further
reducing the number of required computations.

Remove Duplicate Correspondences: A further important
speed optimization pertains to the treatment of multiple
correspondences found by the root finding algorithm. The
set of valid correspondences contains duplicates because
different initial states can converge to the same solution. To
avoid unnecessary evaluation of the canonical neural fields
for these duplicates, we detect duplicate solutions by their
relative distances in canonical space and discard them.

4.2 Skinning Weights Optimization

Analogous to SNARF, in theory, Fast-SNARF supports
learning skinning weights with the analytical gradients in

Algorithm 1 Correspondence Search

Inputs:
{(x′,x0, J̃0)} query points and initialization
B bone transformations
wσw skinning weights MLP

Variant 1: MLP-based Search (SNARF)

for x′,x0, J̃0 ∈ {(x′,x0, J̃0)} in parallel do
for k ← 0, n do

w1, ..., wnb ← wσw (x
k
j ) costly operations

T←
∑nb
i=1 wi(x

k) ·Bi inside root finding
xk+1, J̃k+1 ← broyden(xk, J̃k,T,x′) . Eq. (6)

end for
end for
return: {xn}

Variant 2: Voxel-based Search (Fast-SNARF)

for each xv ∈ {xv} in parallel do
w1, ..., wnb ← wσw (xv) pre-computation
Tv ←

∑nb
i=1 wi ·Bi

end for
for x′,x0, J̃0 ∈ {(x′,x0, J̃0)} in parallel do

for k ← 0, n do
T← trilerp(xk, {Tv}) lightweight operation
xk+1, J̃k+1 ← broyden(xk, J̃k,T,x′) . Eq. (6)

end for
end for
return: {xn}

Eq. (12). However, there are two practical challenges.

Approximated Gradient: A first problem lies in that Eq. (12)
involves computing derivatives and the matrix inversion(
∂dσw (x∗,B)

∂x∗

)−1
, which is time-consuming, impeding our

goal of fast training. To address this, we note that this term is
identical to the inverse of the Jacobian J in the last iteration
of root finding (Eq. (7)):(

∂dσw (x
∗,B)

∂x∗

)−1
=

(
∂dσw (x

∗,B)− x′

∂x∗

)
︸ ︷︷ ︸

J

−1

(16)

because the deformed point x′ is a given input and is inde-
pendent of the canonical correspondence x∗. The inverse of
the Jacobian J is approximated in Broyden’s method as J̃.
Thus, we use J̃ directly:

∂x∗

∂σw
= −J̃ · ∂dσw (x

∗,B)

∂σw
. (17)

Distilling Smooth Skinning Fields: A second problem is
that the voxel-based parameterization does not have the
global smoothness bias of MLPs, thus optimizing voxels
directly would result in a noisy skinning weight field. To
obtain smooth skinning weights while using voxel-based
correspondence search, a common approach is to apply a
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total variational regularizer. However, we experimentally
found that this regularization does not lead to the desired
smoothness of the skinning weights and negatively affects
the accuracy of the generated shapes. We thus propose a
new approach by using an MLP to parameterize the skin-
ning weight field during training but continuously distill
the MLP to a voxel-based skinning weight field at each
training iteration. The skinning weight field is thus smooth
by design due to the intermediate use of an MLP. At each
training iteration, we compute the skinning weights voxel
grid on the fly by evaluating the MLP at grid points {xv},
and then use our fast voxel-based correspondence search.
In this scheme the parameters of the MLP are optimized
during training, not the voxels directly which are only used
to store the weights. The conversion from MLP to voxels
does introduce additional computation during training, but
the overhead is minor since the voxel grid is low resolution.
The inference speed is not influenced at all because the MLP
is used during training only. This yields on-par accuracy
with SNARF as we inherit the inductive smoothness bias of
the MLP-based skinning weight model.

5 LEARNING HUMAN AVATARS FROM 3D SCANS

We can use our articulation module to learn animatable
avatars from 3D scans. Given a set of 3D meshes in various
body poses, our method learns the human shape in canon-
ical space as an occupancy field alongside the canonical
skinning weight field which is needed for animation. We
use the same training losses as SNARF [12] (see Section 3).

5.1 Minimally Clothed Humans

We first evaluate the speed and accuracy of our method and
baselines on minimally clothed humans.

5.1.1 Dataset

We follow the same evaluation protocol as NASA [16] and
SNARF [12]. More specifically, we use the DFaust [5] subset
of AMASS [38] for training and evaluating our model on
SMPL [35] meshes of people in minimal clothing. This
dataset covers 10 subjects of varying body shapes. For each
subject, we use 10 sequences, from which we randomly
select one sequence for validation, using the rest for training.
For each frame in a sequence, 20K points are sampled,
among which, half are sampled uniformly in space and half
are sampled in near-surface regions by first applying Pois-
son disk sampling on the mesh surface, followed by adding
isotropic Gaussian noise with σ = 0.01 to the sampled point
locations. In addition to the “within distribution” evalua-
tion on DFaust, we test “out of distribution” performance
on another subset of AMASS, namely PosePrior [1]. This
subset contains challenging, extreme poses, not present in
DFaust. This “out of distribution” setting simulates the real
application scenario, where the reconstructed avatars are
driven with arbitrary poses from MoCap systems or user
control to generate new animations. The poses in AMASS
are obtained by fitting the SMPL model to a sparse set of
keypoints tracked by a MoCap system [36].

5.1.2 Baselines
We consider SNARF as our main baseline. In addition, we
consider the following additional baselines. For SNARF,
“Back-LBS” and “Pose-ONet” we use the same training
losses and hyperparameters as in Fast-SNARF.

Pose-Conditioned Occupancy Networks (Pose-ONet): This
baseline extends Occupancy Networks [39] by directly con-
catenating the pose input to the occupancy network.

Backward Skinning (Back-LBS): This baseline implements
the concept of backward skinning similar to [27]. A network
takes a deformed point and pose condition as input and
outputs the skinning weights of the deformed point. The
deformed point is then warped back to canonical space
via LBS and the canonical correspondence is fed into the
canonical shape network to query occupancy.

NASA: NASA [16] models articulated human bodies as a
composition of multiple parts, each of which transforms
rigidly and deforms according to the pose. Note that in con-
trast to us, NASA requires ground-truth skinning weights
for surface points as supervision. We use the official NASA
implementation provided by the authors.

5.1.3 Results and Discussion

Within Distribution Accuracy: Overall, all methods per-
form well in this relatively simple setting, as shown in
Table 1. Our method achieves on-par or better accuracy
compared to SNARF and provides an improvement over
other baselines. Our method produces bodies with smooth
surfaces and correct poses as shown in Fig. 6. In contrast,
NASA suffers from discontinuous artifacts near joints. Back-
LBS and Pose-ONet suffer from missing body parts.

Out of Distribution (OOD) Accuracy: In this setting, we
test the trained models on a different dataset, PosePrior [1],
to assess the performance in more realistic settings, where
poses can be far from those in the training set. Unseen
poses cause drastic performance degradation to the base-
line methods as shown in Table 1. In contrast, similar to
SNARF, our method degrades gracefully despite test poses
being drastically different from training poses and very
challenging. As can be seen in Fig. 6, our method generates
natural shapes for the given poses while NASA fails to
generate correctives at bone intersections for unseen poses,
leading to noticeable artifacts. Pose-ONet fails to generate
meaningful shapes and Back-LBS produces distorted bodies
due to incorrect skinning weights.

Speed Comparison: We report the training and inference
speed of all methods on a single NVIDIA Quadro RTX 6000
GPU. In this setting, with MLP-based canonical shape, Fast-
SNARF can be trained within 25 minutes and produces
accurate shapes in any pose. Baseline methods that reach
similar speed, i.e. Pose-ONet, and Back-LBS, do not produce
satisfactory results (see Fig. 6). Compared to the original
SNARF, our improvements, detailed in Section 4, lead to a
speed-up of 150× for the articulation module without loss of
accuracy, as shown in Table 1. Fast-SNARF also dramatically
boosts the training speed (25 minutes vs. 8 hours). Com-
pared to NASA, Fast-SNARF evaluates the canonical shape
MLP only for true correspondences, while NASA always
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Within Distribution Out of Distribution Inference Speed Training Time
IoU bbox IoU surf IoU bbox IoU surf Articulation Shape Total

Pose-ONet* 79.34% 58.61% 49.21% 28.69% 0ms 28.95ms 29.88ms 16min
Backward-LBS* 81.68% 87.44% 66.93% 68.93% 12.39ms 27.67ms 40.60ms 31min
NASA 96.14% 86.98% 83.16% 60.21% - - 582ms 4h
SNARF 97.31% 90.38% 93.97% 80.65% 806.67ms 186.82ms 994.01ms 8h
Fast-SNARF 97.41% 90.52% 94.20% 81.25% 5.27ms 27.78ms 34.70ms 25min

TABLE 1: Quantitative Results on Minimally Clothed Humans. The mean IoU of uniformly sampled points in space
(IoU bbox) and points near the surface (IoU surface), as well as the inference and training time are reported. Our method
achieves similar accuracy as SNARF (previous state-of-the-art) while being much faster. Our method outperforms all other
baselines in terms of accuracy. Improvements are more pronounced for points near the surface, and for poses outside the
training distribution. Also our method is faster than all baselines except Pose-ONet. Note that Pose-ONet and Backward-
LBS (above the separation line, marked with *) produce distorted shapes, as shown in Fig. 6.
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Fig. 6: Qualitative Results on Minimally Clothed Humans. Our method and SNARF produce results similar to the ground-
truth with correct pose and plausible local details, both for poses within the training distribution and more extreme (OOD)
poses. In contrast, the baseline methods suffer from various artifacts including incorrect poses (Pose-ONet), degenerate
shapes (Pose-ONet and Backward), and discontinuities near joints (NASA), which become more severe for unseen poses.
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generates many candidate correspondences, one for each
bone, and needs to evaluate the canonical shape MLP for
all candidates, leading to slow inference (582ms vs. 35ms)
and training (4 hours vs. 25 minutes).

Ablation - MLP Distillation: SNARF optimizes an MLP-
based skinning field, resulting in smooth skinning weights
but slow training and inference. In Fast-SNARF, we adopt
an MLP distillation strategy: we optimize an MLP-based
skinning weight field for smoothness, but convert it on the
fly to a low-resolution voxel grid at each training iteration,
to enable voxel-based correspondence search. In this way,
Fast-SNARF learns a similarly smooth skinning field as
shown in Fig. 7, yet is much faster than SNARF (see Table 2).

We also compare this MLP distillation strategy with a
naive strategy in which we directly optimize the skinning
weights at each grid point with an additional total varia-
tion loss on the skinning weights voxel grid. As shown in
Table 2, directly optimizing skinning weights voxel (w/o
MLP distillation) leads to inferior results. This accuracy
degradation is due to noisy skinning weights as shown
in Fig. 7. The noisy skinning weights not only affect the
accuracy of posed shapes but also result in artifacts on the
canonical shapes, e.g. on the right hand in Fig. 7. In con-
trast, our strategy distills smooth skinning weights voxels
from the MLP while introducing only a slight overhead
during training (25 minutes vs. 23 minutes). Note that all
three models learn incomplete skinning weights for hands.
Despite that the skeleton includes two joints for each hand,
namely the wrist (green) and palm (white), these models
assign each hand to a single joint, either palm or wrist,
arbitrarily. This is due to the limited hand movement in the
training data.

Ablation - Voxel Grid Resolution: We study the effect of
different resolutions of the skinning weight voxel grid. The
results are shown in Table 2. In general, higher resolutions
lead to higher accuracy but longer training and inference
time. A resolution of 32 × 32 × 8 or 64 × 64 × 16 yields a
good balance between accuracy and speed. A grid of lower
resolution 16 × 16 × 4 cannot fully represent the skinning
weight field and leads to a noticeable accuracy degradation
(by 2.8%). On the other hand, further increasing the resolu-
tion to 128×128×32 produces diminishing returns, i.e. only
0.3% IoU improvement, because the skinning weight field
is naturally smooth and does not contain high-frequency
details. Also, higher resolution significantly slows down the
training and inference speed by more than 2 times because
1) more points need to be evaluated when converting the
MLP to voxels during training and 2) the high-resolution
voxel grid does no longer fit into the GPU’s shared memory
and impacts read speeds significantly.

5.2 Clothed Avatar from Scans

Dataset: We use the registered meshes from CAPE [37]
and their SMPL parameters to train our model. We use
8 subjects with different clothing types for evaluation. We
train a model for each subject and clothing condition.

Baselines: Clothed humans are more challenging to model
than minimally clothed humans due to the clothing details

Configurations Accuracy Inference Training

Baseline SNARF 80.7% 807ms + 187ms 8h
+ Voxel-based search - 61ms + 187ms -

+ Pre-compute LBS - 40ms + 187ms -
+ CUDA kernel - 5.3ms + 187ms -

+ Filter corres. - 5.3ms + 28ms -

Fast-SNARF 81.2% 5.3ms + 28ms 25 min
w/o MLP distillation 78.2% 5.3ms + 28ms 23 min

16× 16× 4 78.3% 3.6ms + 28ms 23min
32× 32× 8 81.1% 4.6ms + 28ms 24min
64× 64× 16 81.2% 5.3ms + 28ms 25min
128× 128× 32 81.5% 16ms + 28ms 52min

TABLE 2: Quantitative Ablation Study. We report accuracy
(the mean IoU of points near the surface in out of distri-
bution setting), inference speed (articulation speed + shape
query speed) and training time of several ablative baselines.

SNARF Fast-SNARF w/o MLP distillation
8 h 25 min 23 min

Fig. 7: Skinning Weight Learning Strategies. We show
skinning weights learned with three different strategies as
well as the corresponding training times. See text.

and non-linear deformations. Since most baselines from
Section 5.1 already suffer from implausible shapes and
artifacts, we exclude them in this evaluation. Instead, we
keep SNARF as our major baseline, and also include a new
baseline denoted as “SMPL NN”. This baseline assumes
that a skinned base mesh is given, such as SMPL [35].
Given a pose, such a method first deforms the SMPL model
to the target pose using mesh-based LBS. Then for each
query point in deformed space, its corresponding skinning
weights are defined as the skinning weights of its nearest
vertex on the deformed SMPL mesh. Finally, with the skin-
ning weights, the query point can be transformed back to
the canonical space base on inverse LBS.

Results: The results are shown in Fig. 8. Our method can
generate realistic clothed humans in various poses including
details on the face and clothing (e.g. the collar on the
left sample). The clothing also deforms naturally with the
body poses (e.g. the collar on the left sample and the lapel
on the right sample). While SNARF produces results of
similar quality, training our method only requires a frac-
tion of SNARF’s training time (80 minutes vs. 20 hours).
Compared with the SMPL NN baseline, our results contain
much more detail because our method derives accurate
correspondences between the deformed space and canonical
space. SMPL NN suffers from overly smooth shapes due to
inaccurate correspondences when the actual shape and the
skinned base mesh do not match well, e.g. around the lapel.
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Fig. 8: Qualitative Results on Clothed Humans [37]. Our method and SNARF both learn realistic clothing shape and
deformations. In contrast, the baseline method, using a skinned base mesh, produces fewer details due to the inaccurate
deformation when the base mesh mismatches the actual shape (highlighted in red circles).

Fig. 9: Qualitative Results on Animal. Our method learns
meaningful skinning weights and shapes for an animal
(left), enabling realistic animation in unseen poses (right).

6 LEARNING 3D ANIMALS

Our method also supports other articulated objects beyond
humans. Here, we apply our method to a quadruped. The
training data contains static meshes obtained by randomly
posing a parametric animal model, SMAL [74]. Although
the animal has more degrees of freedom than a human (33
joints vs. 24 joints), our method successfully learns mean-
ingful skinning weights and shapes, and generates realistic
animation in unseen poses, as shown in Fig. 9.

7 LEARNING HUMAN AVATARS FROM IMAGES

Compared to the original SNARF, our new articulation
module is even more versatile. Fast-SNARF can support
other neural fields in the same manner that SNARF and
its variants have been utilized. In addition, our voxel-based
skinning weights representation allows skinning weights
to be explicitly defined or initialized. This functionality
is particularly useful in scenarios where observations are
insufficient to determine skinning weights reliably. Further-
more, the speed of Fast-SNARF allows integration with vol-
umetric renderers, enabling new applications that involve
image observations. Here, we demonstrate an example in
which we learn textured animatable avatars from monocular
videos by taking these advantages. This example has been
covered as an ablative baseline in our concurrent work
InstantAvatar [29].

Canonical Representation: To model appearance, we use
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Fig. 10: Qualitative Results on PeopleSnapshot [2]. Trained with a monocular video of a moving person and accurate
poses, our method can generate images of the person from novel viewpoints (col. 3-4) and in novel body poses (col. 5-6).

neural radiance fields (NeRFs) [42] as our canonical repre-
sentation. NeRF predicts the opacity σ and color c for any
3D point x in canonical space

fσf : R3 → R+,R3 (18)
x 7→ σ, c. (19)

We note that our deformation module runs much faster
than a standard MLP (5ms vs. 27ms). Therefore, relying on
the original NeRF formulation would introduce significant
overhead due to its reliance on MLPs to represent the scene.
To circumvent this bottleneck we use instant-NGP [43] as
the backbone. Instant-NGP stores explicit multi-layer spatial
features as a hash table and uses only a shallow MLP to fuse
features of different coarseness. Hence the method is much
faster than deep MLP-based methods. Note that we have
to omit pose-dependent local deformations because instant-
NGP does not allow additional pose conditioning, unlike
MLPs.

Volumetric Rendering of Articulated Shapes: For render-
ing, we follow NeRF [42] and first compute the opacity and
color of multiple sample points along a ray cast from a pixel
and then integrate the opacity and color using volumetric
rendering. Rendering articulated NeRFs is similar. The main
difference is that the sample points are first mapped to the
canonical space via our articulation module before comput-
ing the opacity and color.

Losses: We train our model by minimizing the robust Huber
loss [25] ρ between the predicted color of the pixels C and
the corresponding ground-truth color Cgt:

Lrgb = ρ(‖C − Cgt‖). (20)

In addition, we use the human mask (which is obtained via
chroma key) and apply a loss on the rendered 2D alpha
values, in order to reduce floating noise artifacts in the
empty space which are typical for NeRF representations:

Lalpha = ‖α− αgt‖1. (21)

Note that in this setting we use preset skinning weights
derived from the SMPL [35] model. This is because we
use the PeopleSnapshot [2] dataset which does not contain

sufficient pose variations to learn skinning weights.

Dataset: We use the PeopleSnapshot dataset proposed by
Alldieck et al. [2], which contains videos of humans rotating
in front of a camera with limited pose variation.

Results: Our results are shown in Fig. 10. Our method
faithfully reconstructs the 3D appearance of both humans
including very fine details such as the logo on the T-
shirt, wrinkles on the pants, and facial features. With the
reconstructed model, we can then synthesize novel views of
the virtual human. In addition, we can generate images in
novel poses. The images in novel poses are realistic except
that the hand regions are noisy. This is because the palms
are mostly invisible in the training videos. It is a limitation
that our method cannot infer unobserved regions.

Due to our fast articulation module Fast-SNARF and
the backbone instant-NGP [43], the reconstruction process
is fast. With accurate poses as input, the training process
takes only 3 minutes to reach satisfactory results. Rendering
an image in any pose from any view takes on average 1 s.

8 CONCLUSION

We propose Fast-SNARF, a fast, robust, and universal artic-
ulation module for neural field representations. Fast-SNARF
is built upon the idea of differentiable forward skinning
from SNARF [12], but is orders of magnitude faster than
SNARF thanks to a series of algorithmic and implementa-
tion improvements. These include voxel-based correspon-
dence search, LBS pre-computation, a custom CUDA kernel
implementation for root finding, duplicate correspondences
removal, approximated implicit gradients, and online MLP-
to-voxel conversion. The resulting algorithm can find cor-
respondences as accurately as SNARF while being 150×
faster. This leads to significant speed-up in various real-
world applications of forward skinning algorithms. Using
Fast-SNARF we are able to learn animatable human avatars
from scans 15× faster than SNARF, and in contrast to
SNARF, the speed bottleneck is now the canonical shape
query instead of the articulation module. We believe Fast-
SNARF’s speed and accuracy will open new applications
and accelerate research on non-rigid 3D reconstruction.
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