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This is the supplementary document for VariTex: Varia-

tional Neural Face Textures. We list implementation details

in Sec. 1, complement the experimental setup section from

the main paper in Sec. 2, and discuss supplementary results

and ablations in Sec. 3.

1. Implementation Details

1.1. Architectural Details

We implement VariTex in PyTorch Lightning [9] and use

PyTorch3D [22]. Our pipeline contains four neural net-

works: An encoder that maps RGB images to a latent dis-

tribution; a face texture decoder that generates a neural face

texture; an additive decoder that produces features for re-

gions missing in the 3D face model; and a Feature2Image

(rendering) network. Tables 4, 5, 6, and 7 list their archi-

tectural layers and the number of parameters in each layer.

For brevity, we omit normalization layers, but include their

parameter counts in the totals. All networks use ReLU acti-

vations and batch normalization [13].

1.2. Training Details

Optimization and Hyperparameters. We use Adam [16]

to optimize the network parameters with an empirically de-

termined learning rate of 0.001. We set the exponential de-

cay rates for the first and second moments to 0.9 and 0.999.

The training dataset is randomly divided into batches of size

7. The network trains for 44 epochs over the full training

dataset, which takes approximately 96 hours on an NVIDIA

Quadro RTX 6000/8000 GPU.

Objective Function. For the perceptual loss LV GG (Eq. 2

in the main paper), the function φV GGj
(·) extracts the j-th

feature map from a VGG network [23]. The VGG network

is pretrained on ImageNet [6], and the associated weights

per feature map vj are v = [ 1

32
, 1

16
, 1

8
, 1

4
, 1]⊤.

We use a two-scale patch discriminator D for photore-

alism [21]. The two scales are a) full scale and b) half the

scale after average pooling across the spatial dimensions.

Unlike the original architecture [21], we do not feed any

segmentation masks and we use least squares as a loss func-

tion. The final loss is computed as the average across both

discriminators.

Augmentation Parameters. We use the following affine

transformations in our augmentation scheme (in Sec. 3.5 in

the main paper): random in-plane rotation (up to ±15◦),

uniformly sampled translation (within 20% of the image

height and width), random scaling between 100% and 120%

of the image size, and random flips along the vertical axis

(p = 0.5).

1.3. Texture Sampling

We sample the texture in the same way as previous

works [24, 25], following the classical computer graphics

pipeline. In particular, we employ the standard rasterization

approach used by traditional renderers.

We project the per-vertex UV coordinates of a face

model mesh [10] into the image space of the desired tar-

get camera. This produces a mapping from image pixels to

UV coordinates Ix,y → UVu,v . We then bilinearly sample

from the neural texture to the image space using this map-

ping. This yields a neural image representing the face: the

face feature image.

2. Detailed Experimental Setup

In this section, we describe data preprocessing, provide

an analysis of the head pose distribution in the training set,

and give more details about the user study.

2.1. Preprocessing

Segmentation Network. We mask the images to the fore-

ground. As there are no ground-truth foreground masks

available for FFHQ [15], we predict them in a preprocess-

ing step. We train a state-of-the-art semantic segmentation

network [4, 5] on CelebAMask-HQ [19]. During training,

we learn to predict all 19 semantic regions in CelebAMask-

HQ, which we aggregate to a single foreground mask. As a

backbone, we use DRN [27] and train it using a batch size

of 12 and a cross-entropy loss for 150 epochs on images

with resolution 512× 512.
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Figure 1. Estimated head pose distribution in the training set [14]. The histograms show the head pose distribution in the FFHQ training

set [15], as estimated by MediaPipe [20]. Even though the dataset has a strong bias against extreme head poses, VariTex still generates

consistent and realistic faces for up to 45◦ rotation from the frontal pose (Fig. 8 and 12).

Ours vs. DFG [8] Ours vs. ConfigNet [18] Ours vs. GIF [11]

±15◦ 63.33± 3.81 62.07± 3.86 91.88± 2.14
±30◦ 77.62± 3.25 83.13± 3.05 91.76± 2.13
±45◦ 80.56± 1.12 95.61± 2.16 98.67± 0.63

Table 1. User study results (consistency task). The numbers (all in percent %) indicate how often participants preferred our method against

related works (higher is better, equality at 50%), together with the corresponding 95% confidence intervals. Our method is clearly preferred

in all settings. For extreme head poses (≥ 30◦), our method outperforms related works by a margin of at least 27%. Please refer to Fig. 2

for a visual plot.

Figure 2. User study results (consistency task). We show how

often participants preferred our images against related works

(GIF [11], ConfigNet [18], DiscoFaceGAN [8]). Participants com-

pared a set of 3 images of the same identity synthesized in different

head poses (-15◦, 0◦, 15◦), (-30◦, 0◦, 30◦), and (-45◦, 0◦, 45◦).

The error bars give the 95% confidence intervals. Our method sig-

nificantly outperforms the other state-of-the-art methods. Please

refer to Tbl. 1 for the detailed numerical results and Fig. 19 for

random examples used in our user study.

Face Model Fitting. We fit a 3D morphable face model [2,

10] to monocular RGB images in order to obtain shape and

expression parameters and head pose. The fitting process

consists of two stages. First, we estimate the head pose and

a dense set of facial landmarks. Second, we solve an op-

timization problem to find the face model coefficients for

shape and expression.

In the first step, we predict head pose and 468 3D facial

landmarks with an existing pipeline, MediaPipe [20].

In the second step, we establish a set of 322 correspon-

dences with the Basel Face Model 2017 [10]. With these

correspondences, we solve an optimization problem to fit

coefficients for shape α ∈ R
199 and expression β ∈ R

100:

(α∗,β∗) = argmin
α,β

322∑

i=1

wi(li − vi(α,β))2, (1)

where vi is a function that generates the MediaPipe-aligned

vertices of the 3D face mesh corresponding to the i-th cor-

respondence for shape and expression coefficients (α, β);

wi are empirically chosen weights [28].

We filter out nine images where the MediaPipe face de-

tection confidence is very low (which happens for low qual-

ity images and images with heavy occlusions, see Fig. 6).



Figure 3. Interpolations. In each row, we linearly interpolate two

identity codes zA and zB . The images at the very left and right

are generated using zA, and zB respectively. The intermedi-

ate faces are generated by linearly interpolating the latent codes:

linerp(zA, zB , w) = w · zA + (1− w) · zB .

Figure 4. Identity consistency for random expressions. We sample

random expressions and render them for multiple identities. The

identity specific appearance of each person is preserved well.

Figure 5. Identity consistency for random shapes. In each column,

we render the same random face shapes from the face model for

different identities with a neutral expression.

Figure 6. All of the extreme outlier images that we removed from

the FFHQ dataset [15].

For FFHQ [14], the fitting process results in 59,991 training

and 10,000 test samples.

2.2. Head Pose Distribution in the Training Set

VariTex can generate consistent results for extreme tar-

get head poses. This is particularly remarkable because we

train on a monocular dataset with a highly non-uniform dis-

tribution of head poses leading to a strong pose imbalance

in our training data. Fig. 1 plots the distribution of pitch and

yaw in the FFHQ [14] training set, as estimated by Medi-

aPipe [20]. We do not use multi-view or multi-pose con-

sistency losses to alleviate this problem, but rather rely on

the natural geometry consistent design of our texture-space

synthesis pipeline. Please see Sec. 3.4 for a more details.



2.3. User Study Setting

In order to evaluate the perceptual quality of our gen-

erated images, we conducted a user study in which we

compared our results against three state-of-the-art meth-

ods [8, 11, 18]. We generated the results for these methods

using the implementation and pre-trained models provided

by them publicly on their project webpages. For a fair com-

parison, we removed the background for the methods where

the face was not zoomed in [8, 11]. For the first question

(quantifying photorealism), we showed randomly selected

pairs for the same random head pose for both our method

and one of theirs. We show such examples from our user

study in Fig. 18. For the second question (identity con-

sistency), we showed a set of 3 images for head poses in

{±45◦,±30◦,±15◦} for pitch, yaw, and pitch+yaw (each

group also contains a frontal image with pose 0◦). Fig. 19

shows such an example set of images for each head pose

that was used in the user study. The order of the methods,

as well as the order of the pairs, was randomized and not

seen by the participants.

3. Supplementary Results

3.1. Comparison with Related Work

In the main paper, we qualitatively compare with related

work in Fig. 4 by changing pitch and yaw simultaneously.

We complement this comparison by reposing along each

axis individually in Fig. 15 and 16. In addition, we com-

plement the consistency scores in Tbl. 2 in the main paper

with standard deviations in Tbl. 2.

3.2. User Study Results

The main paper reports user study results for identity

consistency for poses (−45◦, 0◦, 45◦). In the following,

we provide supplementary results for the same user study

setting, but less extreme head poses: (−30◦, 0◦, 30◦) and

(−15◦, 0◦, 15◦).

Fig. 2 illustrates how often participants preferred ours

against the state-of-the-art methods. Our method outper-

forms the other methods with a margin of 30% for extreme

head poses (±45◦). For less extreme poses, participants

chose our method over the others in at least 61% of all ex-

amples.

We provide the numerical results and 95% confidence

intervals in Tbl. 1. We assume a Gaussian distribution and

compute the confidence intervals using a student’s T distri-

bution:

(µ− tn−1 ·
s√
n
, µ+ tn−1 ·

s√
n
), (2)

where n is the sample size, µ and s are the empirical mean

and standard deviation, and tn−1 is the statistic for the 95%

confidence interval of the two-tailed student’s T distribution

for (n− 1) degrees of freedom.

3.3. Supplementary Qualitative Results

We provide additional results for sampled expressions

and shape in Figures 4 and 5. Fig. 12 shows another set of

identities for different head poses. In Fig. 13, we reconstruct

real images and re-pose them. The latent identity code used

for the rendering is the distribution mean µz predicted by

the encoder: z = µz . Note that unlike other works [1, 3],

we do not find the latent code by optimization—it is di-

rectly predicted by the encoder. Not all input images are

frontal, so the decoder network hallucinates the hidden re-

gions. Fig. 8 shows renderings outside the main training

distribution (plotted as histograms). For expression (top

row), we vary the first expression coefficient, keeping all

other coefficients zero. This yields cartoon-like geometries

at the extremes, which are still rendered at good quality. For

the pose, we show examples between -60◦to 60◦.

The bottom row of Fig. 7 shows renderings for the same

latent code for the face texture zface with sampled additive

codes zadditive. The top row visualizes the superimposition

of the rendered images onto arbitrary backgrounds.

Figure 7. Top: The predicted masks allow alpha blending of back-

grounds. Bottom: We combine the one latent code for the face

with different additive codes.

Identity Mixing and Interpolations. VariTex can not only

sample new identities from learned distributions but also

walk the latent space. For example, it can gradually morph

one face into another by linearly interpolating the latent

identity code z. We show some examples in Fig. 3.

3.4. Supplementary Ablations

In our main paper, we provide an ablation study for neu-

ral textures. In this supplementary, we complement our ab-

lations by analyzing the effect of the proposed augmentation

scheme (Sec. 3.5 in the main paper).

The augmentation scheme makes our model robust to-

wards changes in head pose and translation of the output,

which is required to render plausible exterior regions of the

face for different head poses and positions inside the image.

Without augmentation, the additive decoder tends to ignore

the conditioning on the neural feature image and produces



Similarity yaw ↔
[18] 0.208 ± 0.086 0.509 ± 0.078 0.790 ± 0.045 - 0.795 ± 0.042 0.515 ± 0.075 0.257 ± 0.090

[11] 0.133 ± 0.094 0.264 ± 0.115 0.485 ± 0.114 - 0.487 ± 0.108 0.257 ± 0.108 0.117 ± 0.090

[8] 0.530 ± 0.074 0.691 ± 0.055 0.866 ± 0.031 - 0.863 ± 0.032 0.675 ± 0.058 0.521 ± 0.076

Ours 0.568 ± 0.093 0.729 ± 0.067 0.874 ± 0.038 - 0.873 ± 0.041 0.732 ± 0.068 0.585 ± 0.086

Ref [29] 0.855 ± 0.069 0.845 ± 0.067 0.726 ± 0.052 - 0.790 ± 0.048 0.773 ± 0.075 0.779 ± 0.051

Similarity pitch ↕
[18] -0.008 ± 0.072 0.014 ± 0.078 0.459 ± 0.083 - 0.476 ± 0.087 0.095 ± 0.075 0.010 ± 0.067

[11] 0.039 ± 0.076 0.164 ± 0.102 0.400 ± 0.125 - 0.448 ± 0.111 0.191 ± 0.101 0.095 ± 0.087

[8] 0.270 ± 0.099 0.461 ± 0.097 0.781 ± 0.053 - 0.826 ± 0.045 0.581 ± 0.077 0.388 ± 0.093

Ours 0.416 ± 0.094 0.611 ± 0.082 0.821 ± 0.047 - 0.817± 0.048 0.611± 0.084 0.420 ± 0.096

Ref [29] 0.719 ± 0.073 0.725 ± 0.077 0.753 ± 0.063 - 0.797 ± 0.055 0.805 ± 0.045 0.782 ± 0.040

-45◦ -30◦ -15◦ 0◦ 15◦ 30◦ 45◦

Table 2. Identity consistency for different head poses. We complement the cosine similarity scores from Tbl. 2 in the main paper with the

standard deviations. Note that cosine similarity yields values in the range [−1, 1].

Figure 8. Samples from our model under extreme head pose and

expression, extrapolating from the training data. Even for very un-

natural facial geometry, the model outputs a reasonable rendering.

The histograms plot the training distributions.

features in the wrong spatial location (e.g., for hair or eyes).

Fig. 17 shows how the output image becomes distorted for a

model trained without any augmentations and visualizes the

effect of using lower-dimensional or RGB-only textures.

We provide FID [12] and consistency scores in Tbl. 3.

Note that the consistency score is computed by ArcFace [7],

which expects a cropped face. Therefore, even with mis-

placed exterior regions (as described above), a high con-

sistency score can be attained, even though the generated

image is of poor visual quality.

It might seem surprising that VariTex can consistently

render such extreme head poses, despite being trained on

mostly frontal faces (Fig. 1). A reasonable explanation is

that the strict mapping from texture to image space assists

the networks to learn extreme poses, even from very few

examples. We conduct two experiments to support this ex-

planation. Please recall that the neural texture projects to

a pixel-aligned feature image, which is translated to RGB

by the Feature2Image renderer (Fig. 3.1 in the main paper).

First, we compare the facial appearance for different poses.

In Fig. 9, we generate faces under different poses and warp

the output images to a frontal pose. We observe that the

neural renderer can adapt lighting (first row), but remains

highly identity consistent.

We further investigate the behavior of the neural render

by feeding manipulated and corrupted feature images. In

Fig. 10, we split feature images in half and combine differ-

ent identities. The rendered outputs are largely the same as

a concatenation in the output space, which indicates that

for the face regions defined by the texture, the renderer

considers very small pixel neighborhoods. Still, the ren-

derer adapts features when needed: For the facial contours

and the concatenation line, the renderer changes the out-

puts, best visible for the hair in the example on the right.

In Fig. 11, we randomly crop holes in the feature image.

The rendered outputs are mostly locally affected around the

cropped patch.

3.5. Limitations

We show in this paper that synthesizing novel identi-

ties in the texture space of a face model enables highly

consistent reposing for the face region. However, the face

model [10] covers only the frontal geometry of the face,

leaving out regions such as the hair and mouth interior. This

makes it very challenging to re-pose them. Our additive de-

coder partially mitigates this problem by producing plau-

sible features for these regions on a per-frame basis. But



Figure 9. Investigating the behavior of the Feature2Image renderer for different poses. We generate faces under different poses and use

the given 3D geometries to warp them to the frontal pose. The frontalized faces are highly identity consistent while the lighting might be

changed (top and bottom).

the additive decoder has no notion of temporal consistency;

the produced features yield variations over pose animations.

This prevents the exterior regions from having the same

quality of geometry consistency as the face in re-posed im-

ages. View consistent synthesis for such regions, particu-

larly with unlabelled monocular training data, is a challeng-

ing and open research problem, which will be an interesting

avenue for future work. A very recent work [26] shows a

promising direction to solve this problem by proposing a

full head model that includes hair.

A related problem is handling other objects usually asso-

ciated with face images, such as glasses and hats. Since they

are not part of the face model but are present in the training

images, they are “texture-copied” into our synthesized im-

ages. But without their geometry, any reposing results in

projectively distorted outputs. We show some examples in

Fig. 14. Once again, a possible interesting solution would

be to develop and use a graphics model that can provide the

geometry for such objects.
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Layer #Params Output Shape
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Conv2d 32.8 K [256, 64, 64]
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Total 11.2 M µz: [256]; σ2
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σ
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normalization. The output shapes do not contain a batch dimen-

sion.
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Figure 15. Comparison with state-of-the-art methods for head pose rotations around the vertical axis.

Figure 16. Comparison with state-of-the-art methods for head pose rotations around the horizontal axis.



Figure 17. Ablation study visualizations. A model trained with-

out any augmentations tends to misplace features where no 3D

geometries are available. This can yield unrealistic shapes in the

exterior region or artifacts (row 1). Low-dimensional textures pro-

duce blurred out images (row 2). Using a loss that enforces RGB

in the first three texture channels yields unrealistic colors in the

output (row 3 and 4).

Bradley, Siyu Tang, and Otmar Hilliges. Eth-xgaze: A large

scale dataset for gaze estimation under extreme head pose

Layer #Params Output Shape

Conv2d 2.4 M [512, 4, 4]

Conv2d 2.4 M [512, 8, 8]

Conv2d 262 K [512, 8, 8]

3× Conv2d 2.4 M [512, 8, 8]

Conv2d 1.2 M [256, 16, 16]

Conv2d 131 K [256, 16, 16]

Conv2d 626 K [256, 16, 16]

Conv2d 589 K [256, 16, 16]

Conv2d 626 K [256, 16, 16]

Conv2d 589 K [256, 32, 32]

Conv2d 65.5 K [256, 32, 32]

Conv2d 626 K [256, 32, 32]

Conv2d 589 K [256, 32, 32]

Conv2d 626 K [256, 32, 32]

Conv2d 294 K [128, 64, 64]

Conv2d 32.8 K [128, 64, 64]

Conv2d 165 K [128, 64, 64]

Conv2d 147 K [128, 64, 64]

Conv2d 165 K [128, 64, 64]

Conv2d 73.7 K [64, 128, 128]

Conv2d 8.2 K [64, 128, 128]

Conv2d 46.1 K [64, 128, 128]

Conv2d 36.9 K [64, 128, 128]

Conv2d 46.1 K [64, 128, 128]

Conv2d 36.9 K [64, 256, 256]

Conv2d 4.1 K [64, 256, 256]

Conv2d 46.1 K [64, 256, 256]

Conv2d 36.9 K [64, 256, 256]

Conv2d 9.2 K [16, 256, 256]

Total 19.2 M [16, 256, 256]

Table 6. Additive decoder architecture. We report the convolu-

tional layers with their number of parameters and output shape

(channels, height, width). For brevity, we omit activations (ReLU)

and batch normalization. Please note that the output shapes do not

contain a batch dimension.

and gaze variation. In European Conference on Computer

Vision, pages 365–381. Springer, 2020. 5



Layer #Params Output Shape

Conv2d 18.5 K [64, 256, 256]

Conv2d 36.9 K [64, 256, 256]

MaxPool2d 0 [64, 128, 128]

Conv2d 73.9 K [128, 128, 128]

Conv2d 147 K [128, 128, 128]

MaxPool2d 0 [128, 64, 64]

Conv2d 295 K [256, 64, 64]

Conv2d 590 K [256, 64, 64]

MaxPool2d 0 [256, 32, 32]

Conv2d 1.2 M [512, 32, 32]

Conv2d 2.4 M [512, 32, 32]

MaxPool2d 0 [512, 16, 16]

Conv2d 4.7 M [1024, 16, 16]

Conv2d 9.4 M [1024, 16, 16]

ConvTranspose2d 2.1 M [512, 32, 32]

Conv2d 4.7 M [512, 32, 32]

Conv2d 2.4 M [512, 32, 32]

ConvTranspose2d 524 K [256, 64, 64]

Conv2d 1.2 M [256, 64, 64]

Conv2d 590 K [256, 64, 64]

ConvTranspose2d 131 K [128, 128, 128]

Conv2d 295 K [128, 128, 128]

Conv2d 147 K [128, 128, 128]

ConvTranspose2d 32.8 K [64, 256, 256]

Conv2d 73.8 K [64, 256, 256]

Conv2d 36.9 K [64, 256, 256]

Conv2d 260 [4, 256, 256]

Total 31.1 M [4, 256, 256]

Table 7. Feature2Image Architecture. We report its layers with

their number of parameters and output shape (channels, height,

width). For brevity, we omit activations (ReLU) and batch normal-

ization. Please note that the output shapes do not contain a batch

dimension. The final output shape contains three channels for the

RGB output image and one channel for the predicted foreground

mask.

Figure 18. User study examples (photorealism task). Participants

compare randomly selected pairs of images from each method.

For a fair comparison, each such pair contains images in the same

randomly-selected pose.



Figure 19. User study examples (consistency task). We showed a randomly selected set of 3 images for the evaluated head poses and

asked the participants to choose the set where the person was represented more consistently. The sequence of questions and options were

randomized and the labels were not shown to the user.


