
VariTex: Variational Neural Face Textures - Supplementary Document

Marcel C. Bühler1 Abhimitra Meka2 Gengyan Li1,2 Thabo Beeler2 Otmar Hilliges1

1ETH Zurich 2Google

https://mcbuehler.github.io/VariTex

This is the supplementary document for VariTex: Varia-

tional Neural Face Textures. We list implementation details

in Sec. 1, complement the experimental setup section from

the main paper in Sec. 2, and discuss supplementary results

and ablations in Sec. 3.

1. Implementation Details

1.1. Architectural Details

We implement VariTex in PyTorch Lightning [9] and use

PyTorch3D [22]. Our pipeline contains four neural net-

works: An encoder that maps RGB images to a latent dis-

tribution; a face texture decoder that generates a neural face

texture; an additive decoder that produces features for re-

gions missing in the 3D face model; and a Feature2Image

(rendering) network. Tables 4, 5, 6, and 7 list their archi-

tectural layers and the number of parameters in each layer.

For brevity, we omit normalization layers, but include their

parameter counts in the totals. All networks use ReLU acti-

vations and batch normalization [13].

1.2. Training Details

Optimization and Hyperparameters. We use Adam [16]

to optimize the network parameters with an empirically de-

termined learning rate of 0.001. We set the exponential de-

cay rates for the first and second moments to 0.9 and 0.999.

The training dataset is randomly divided into batches of size

7. The network trains for 44 epochs over the full training

dataset, which takes approximately 96 hours on an NVIDIA

Quadro RTX 6000/8000 GPU.

Objective Function. For the perceptual loss LV GG (Eq. 2

in the main paper), the function φV GGj
(·) extracts the j-th

feature map from a VGG network [23]. The VGG network

is pretrained on ImageNet [6], and the associated weights

per feature map vj are v = [1

32
, 1

16
, 1

8
, 1

4
, 1]⊤.

We use a two-scale patch discriminator D for photore-

alism [21]. The two scales are a) full scale and b) half the

scale after average pooling across the spatial dimensions.

Unlike the original architecture [21], we do not feed any

segmentation masks and we use least squares as a loss func-

tion. The final loss is computed as the average across both

discriminators.

Augmentation Parameters. We use the following affine

transformations in our augmentation scheme (in Sec. 3.5 in

the main paper): random in-plane rotation (up to ±15◦),

uniformly sampled translation (within 20% of the image

height and width), random scaling between 100% and 120%

of the image size, and random flips along the vertical axis

(p = 0.5).

1.3. Texture Sampling

We sample the texture in the same way as previous

works [24, 25], following the classical computer graphics

pipeline. In particular, we employ the standard rasterization

approach used by traditional renderers.

We project the per-vertex UV coordinates of a face

model mesh [10] into the image space of the desired tar-

get camera. This produces a mapping from image pixels to

UV coordinates Ix,y → UVu,v . We then bilinearly sample

from the neural texture to the image space using this map-

ping. This yields a neural image representing the face: the

face feature image.

2. Detailed Experimental Setup

In this section, we describe data preprocessing, provide

an analysis of the head pose distribution in the training set,

and give more details about the user study.

2.1. Preprocessing

Segmentation Network. We mask the images to the fore-

ground. As there are no ground-truth foreground masks

available for FFHQ [15], we predict them in a preprocess-

ing step. We train a state-of-the-art semantic segmentation

network [4, 5] on CelebAMask-HQ [19]. During training,

we learn to predict all 19 semantic regions in CelebAMask-

HQ, which we aggregate to a single foreground mask. As a

backbone, we use DRN [27] and train it using a batch size

of 12 and a cross-entropy loss for 150 epochs on images

with resolution 512× 512.

https://mcbuehler.github.io/VariTex

Figure 1. Estimated head pose distribution in the training set [14]. The histograms show the head pose distribution in the FFHQ training

set [15], as estimated by MediaPipe [20]. Even though the dataset has a strong bias against extreme head poses, VariTex still generates

consistent and realistic faces for up to 45◦ rotation from the frontal pose (Fig. 8 and 12).

Ours vs. DFG [8] Ours vs. ConfigNet [18] Ours vs. GIF [11]

±15◦ 63.33± 3.81 62.07± 3.86 91.88± 2.14
±30◦ 77.62± 3.25 83.13± 3.05 91.76± 2.13
±45◦ 80.56± 1.12 95.61± 2.16 98.67± 0.63

Table 1. User study results (consistency task). The numbers (all in percent %) indicate how often participants preferred our method against

related works (higher is better, equality at 50%), together with the corresponding 95% confidence intervals. Our method is clearly preferred

in all settings. For extreme head poses (≥ 30◦), our method outperforms related works by a margin of at least 27%. Please refer to Fig. 2

for a visual plot.

Figure 2. User study results (consistency task). We show how

often participants preferred our images against related works

(GIF [11], ConfigNet [18], DiscoFaceGAN [8]). Participants com-

pared a set of 3 images of the same identity synthesized in different

head poses (-15◦, 0◦, 15◦), (-30◦, 0◦, 30◦), and (-45◦, 0◦, 45◦).

The error bars give the 95% confidence intervals. Our method sig-

nificantly outperforms the other state-of-the-art methods. Please

refer to Tbl. 1 for the detailed numerical results and Fig. 19 for

random examples used in our user study.

Face Model Fitting. We fit a 3D morphable face model [2,

10] to monocular RGB images in order to obtain shape and

expression parameters and head pose. The fitting process

consists of two stages. First, we estimate the head pose and

a dense set of facial landmarks. Second, we solve an op-

timization problem to find the face model coefficients for

shape and expression.

In the first step, we predict head pose and 468 3D facial

landmarks with an existing pipeline, MediaPipe [20].

In the second step, we establish a set of 322 correspon-

dences with the Basel Face Model 2017 [10]. With these

correspondences, we solve an optimization problem to fit

coefficients for shape α ∈ R
199 and expression β ∈ R

100:

(α∗,β∗) = argmin
α,β

322∑

i=1

wi(li − vi(α,β))2, (1)

where vi is a function that generates the MediaPipe-aligned

vertices of the 3D face mesh corresponding to the i-th cor-

respondence for shape and expression coefficients (α, β);

wi are empirically chosen weights [28].

We filter out nine images where the MediaPipe face de-

tection confidence is very low (which happens for low qual-

ity images and images with heavy occlusions, see Fig. 6).

Figure 3. Interpolations. In each row, we linearly interpolate two

identity codes zA and zB . The images at the very left and right

are generated using zA, and zB respectively. The intermedi-

ate faces are generated by linearly interpolating the latent codes:

linerp(zA, zB , w) = w · zA + (1− w) · zB .

Figure 4. Identity consistency for random expressions. We sample

random expressions and render them for multiple identities. The

identity specific appearance of each person is preserved well.

Figure 5. Identity consistency for random shapes. In each column,

we render the same random face shapes from the face model for

different identities with a neutral expression.

Figure 6. All of the extreme outlier images that we removed from

the FFHQ dataset [15].

For FFHQ [14], the fitting process results in 59,991 training

and 10,000 test samples.

2.2. Head Pose Distribution in the Training Set

VariTex can generate consistent results for extreme tar-

get head poses. This is particularly remarkable because we

train on a monocular dataset with a highly non-uniform dis-

tribution of head poses leading to a strong pose imbalance

in our training data. Fig. 1 plots the distribution of pitch and

yaw in the FFHQ [14] training set, as estimated by Medi-

aPipe [20]. We do not use multi-view or multi-pose con-

sistency losses to alleviate this problem, but rather rely on

the natural geometry consistent design of our texture-space

synthesis pipeline. Please see Sec. 3.4 for a more details.

2.3. User Study Setting

In order to evaluate the perceptual quality of our gen-

erated images, we conducted a user study in which we

compared our results against three state-of-the-art meth-

ods [8, 11, 18]. We generated the results for these methods

using the implementation and pre-trained models provided

by them publicly on their project webpages. For a fair com-

parison, we removed the background for the methods where

the face was not zoomed in [8, 11]. For the first question

(quantifying photorealism), we showed randomly selected

pairs for the same random head pose for both our method

and one of theirs. We show such examples from our user

study in Fig. 18. For the second question (identity con-

sistency), we showed a set of 3 images for head poses in

{±45◦,±30◦,±15◦} for pitch, yaw, and pitch+yaw (each

group also contains a frontal image with pose 0◦). Fig. 19

shows such an example set of images for each head pose

that was used in the user study. The order of the methods,

as well as the order of the pairs, was randomized and not

seen by the participants.

3. Supplementary Results

3.1. Comparison with Related Work

In the main paper, we qualitatively compare with related

work in Fig. 4 by changing pitch and yaw simultaneously.

We complement this comparison by reposing along each

axis individually in Fig. 15 and 16. In addition, we com-

plement the consistency scores in Tbl. 2 in the main paper

with standard deviations in Tbl. 2.

3.2. User Study Results

The main paper reports user study results for identity

consistency for poses (−45◦, 0◦, 45◦). In the following,

we provide supplementary results for the same user study

setting, but less extreme head poses: (−30◦, 0◦, 30◦) and

(−15◦, 0◦, 15◦).

Fig. 2 illustrates how often participants preferred ours

against the state-of-the-art methods. Our method outper-

forms the other methods with a margin of 30% for extreme

head poses (±45◦). For less extreme poses, participants

chose our method over the others in at least 61% of all ex-

amples.

We provide the numerical results and 95% confidence

intervals in Tbl. 1. We assume a Gaussian distribution and

compute the confidence intervals using a student’s T distri-

bution:

(µ− tn−1 ·
s√
n
, µ+ tn−1 ·

s√
n
), (2)

where n is the sample size, µ and s are the empirical mean

and standard deviation, and tn−1 is the statistic for the 95%

confidence interval of the two-tailed student’s T distribution

for (n− 1) degrees of freedom.

3.3. Supplementary Qualitative Results

We provide additional results for sampled expressions

and shape in Figures 4 and 5. Fig. 12 shows another set of

identities for different head poses. In Fig. 13, we reconstruct

real images and re-pose them. The latent identity code used

for the rendering is the distribution mean µz predicted by

the encoder: z = µz . Note that unlike other works [1, 3],

we do not find the latent code by optimization—it is di-

rectly predicted by the encoder. Not all input images are

frontal, so the decoder network hallucinates the hidden re-

gions. Fig. 8 shows renderings outside the main training

distribution (plotted as histograms). For expression (top

row), we vary the first expression coefficient, keeping all

other coefficients zero. This yields cartoon-like geometries

at the extremes, which are still rendered at good quality. For

the pose, we show examples between -60◦to 60◦.

The bottom row of Fig. 7 shows renderings for the same

latent code for the face texture zface with sampled additive

codes zadditive. The top row visualizes the superimposition

of the rendered images onto arbitrary backgrounds.

Figure 7. Top: The predicted masks allow alpha blending of back-

grounds. Bottom: We combine the one latent code for the face

with different additive codes.

Identity Mixing and Interpolations. VariTex can not only

sample new identities from learned distributions but also

walk the latent space. For example, it can gradually morph

one face into another by linearly interpolating the latent

identity code z. We show some examples in Fig. 3.

3.4. Supplementary Ablations

In our main paper, we provide an ablation study for neu-

ral textures. In this supplementary, we complement our ab-

lations by analyzing the effect of the proposed augmentation

scheme (Sec. 3.5 in the main paper).

The augmentation scheme makes our model robust to-

wards changes in head pose and translation of the output,

which is required to render plausible exterior regions of the

face for different head poses and positions inside the image.

Without augmentation, the additive decoder tends to ignore

the conditioning on the neural feature image and produces

Similarity yaw ↔
[18] 0.208 ± 0.086 0.509 ± 0.078 0.790 ± 0.045 - 0.795 ± 0.042 0.515 ± 0.075 0.257 ± 0.090

[11] 0.133 ± 0.094 0.264 ± 0.115 0.485 ± 0.114 - 0.487 ± 0.108 0.257 ± 0.108 0.117 ± 0.090

[8] 0.530 ± 0.074 0.691 ± 0.055 0.866 ± 0.031 - 0.863 ± 0.032 0.675 ± 0.058 0.521 ± 0.076

Ours 0.568 ± 0.093 0.729 ± 0.067 0.874 ± 0.038 - 0.873 ± 0.041 0.732 ± 0.068 0.585 ± 0.086

Ref [29] 0.855 ± 0.069 0.845 ± 0.067 0.726 ± 0.052 - 0.790 ± 0.048 0.773 ± 0.075 0.779 ± 0.051

Similarity pitch ↕
[18] -0.008 ± 0.072 0.014 ± 0.078 0.459 ± 0.083 - 0.476 ± 0.087 0.095 ± 0.075 0.010 ± 0.067

[11] 0.039 ± 0.076 0.164 ± 0.102 0.400 ± 0.125 - 0.448 ± 0.111 0.191 ± 0.101 0.095 ± 0.087

[8] 0.270 ± 0.099 0.461 ± 0.097 0.781 ± 0.053 - 0.826 ± 0.045 0.581 ± 0.077 0.388 ± 0.093

Ours 0.416 ± 0.094 0.611 ± 0.082 0.821 ± 0.047 - 0.817± 0.048 0.611± 0.084 0.420 ± 0.096

Ref [29] 0.719 ± 0.073 0.725 ± 0.077 0.753 ± 0.063 - 0.797 ± 0.055 0.805 ± 0.045 0.782 ± 0.040

-45◦ -30◦ -15◦ 0◦ 15◦ 30◦ 45◦

Table 2. Identity consistency for different head poses. We complement the cosine similarity scores from Tbl. 2 in the main paper with the

standard deviations. Note that cosine similarity yields values in the range [−1, 1].

Figure 8. Samples from our model under extreme head pose and

expression, extrapolating from the training data. Even for very un-

natural facial geometry, the model outputs a reasonable rendering.

The histograms plot the training distributions.

features in the wrong spatial location (e.g., for hair or eyes).

Fig. 17 shows how the output image becomes distorted for a

model trained without any augmentations and visualizes the

effect of using lower-dimensional or RGB-only textures.

We provide FID [12] and consistency scores in Tbl. 3.

Note that the consistency score is computed by ArcFace [7],

which expects a cropped face. Therefore, even with mis-

placed exterior regions (as described above), a high con-

sistency score can be attained, even though the generated

image is of poor visual quality.

It might seem surprising that VariTex can consistently

render such extreme head poses, despite being trained on

mostly frontal faces (Fig. 1). A reasonable explanation is

that the strict mapping from texture to image space assists

the networks to learn extreme poses, even from very few

examples. We conduct two experiments to support this ex-

planation. Please recall that the neural texture projects to

a pixel-aligned feature image, which is translated to RGB

by the Feature2Image renderer (Fig. 3.1 in the main paper).

First, we compare the facial appearance for different poses.

In Fig. 9, we generate faces under different poses and warp

the output images to a frontal pose. We observe that the

neural renderer can adapt lighting (first row), but remains

highly identity consistent.

We further investigate the behavior of the neural render

by feeding manipulated and corrupted feature images. In

Fig. 10, we split feature images in half and combine differ-

ent identities. The rendered outputs are largely the same as

a concatenation in the output space, which indicates that

for the face regions defined by the texture, the renderer

considers very small pixel neighborhoods. Still, the ren-

derer adapts features when needed: For the facial contours

and the concatenation line, the renderer changes the out-

puts, best visible for the hair in the example on the right.

In Fig. 11, we randomly crop holes in the feature image.

The rendered outputs are mostly locally affected around the

cropped patch.

3.5. Limitations

We show in this paper that synthesizing novel identi-

ties in the texture space of a face model enables highly

consistent reposing for the face region. However, the face

model [10] covers only the frontal geometry of the face,

leaving out regions such as the hair and mouth interior. This

makes it very challenging to re-pose them. Our additive de-

coder partially mitigates this problem by producing plau-

sible features for these regions on a per-frame basis. But

Figure 9. Investigating the behavior of the Feature2Image renderer for different poses. We generate faces under different poses and use

the given 3D geometries to warp them to the frontal pose. The frontalized faces are highly identity consistent while the lighting might be

changed (top and bottom).

the additive decoder has no notion of temporal consistency;

the produced features yield variations over pose animations.

This prevents the exterior regions from having the same

quality of geometry consistency as the face in re-posed im-

ages. View consistent synthesis for such regions, particu-

larly with unlabelled monocular training data, is a challeng-

ing and open research problem, which will be an interesting

avenue for future work. A very recent work [26] shows a

promising direction to solve this problem by proposing a

full head model that includes hair.

A related problem is handling other objects usually asso-

ciated with face images, such as glasses and hats. Since they

are not part of the face model but are present in the training

images, they are “texture-copied” into our synthesized im-

ages. But without their geometry, any reposing results in

projectively distorted outputs. We show some examples in

Fig. 14. Once again, a possible interesting solution would

be to develop and use a graphics model that can provide the

geometry for such objects.

References

[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan latent

space? In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, pages 4432–4441, 2019. 4
[2] Volker Blanz and Thomas Vetter. A morphable model for

the synthesis of 3d faces. In Proceedings of the 26th an-

nual conference on Computer graphics and interactive tech-

Figure 10. Investigating the behavior of the Feature2Image renderer on manipulated feature images. We concatenate partial feature images

(top) for different identities under the same pose. We render them (middle) and compare the output images with the concatenation of the

original renderings in a difference map (bottom). We observe that the Feature2Image network adapts the region around the concatenation

line and the contours of the face. For most of the face, the renderer performs pixelwise feature-to-RGB translation, but it adapts the less

well defined regions, where no 3D geometries are available.

Flip Rotation Translation Scaling # Channels LRGB FID ↓ Consistency (yaw) ↑
3-dim + LRGB ✓ ✓ ✓ ✓ 3 ✓ 54.27 0.712 ± 0.123

3-dim w/o LRGB ✓ ✓ ✓ ✓ 3 × 47.87 0.684 ± 0.132

16-dim + LRGB ✓ ✓ ✓ ✓ 16 ✓ 37.96 0.724 ± 0.119

None × × × × 16 × 37.37 0.726 ± 0.114

f ✓ × × × 16 × 36.96 0.709 ± 0.120

f + r ✓ ✓ × × 16 × 45.03 0.673 ± 0.125

f + t ✓ × ✓ × 16 × 40.23 0.725 ± 0.118

f + t + s ✓ × ✓ ✓ 16 × 48.86 0.707 ± 0.119

f + r + s ✓ ✓ × ✓ 16 × 38.81 0.702 ± 0.124

Ours ✓ ✓ ✓ ✓ 16 × 34.35 0.727 ± 0.121

Table 3. Extended version of our ablation study in the main paper (Sec. 5.4). We compare photorealism (FID [12]) and identity consistency

(Sec. 4 in the main paper) for neural vs. RGB textures. A higher-dimensional neural texture can yield photorealistic outputs, while also

maintaining high consistency. Fig. 17 shows visual examples. # Channels refers to the number of channels in the texture. The letters f, r, t,

s stand for flipping, rotation, translation, and scaling, as described in Sec. 1.2.

niques, pages 187–194, 1999. 2 [3] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,

Figure 11. Rendering corrupted feature images. We randomly crop holes in the feature image (top), render the resulting corrupted versions

(middle), and visualize their absolute difference (∆, bottom). The Feature2Image renderer produces the same output for the unchanged

features—the corruption mostly affects the local patch.

and Gordon Wetzstein. pi-gan: Periodic implicit generative

adversarial networks for 3d-aware image synthesis. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 5799–5809, 2021. 4
[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2017. 1
[5] Liang Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L. Yuille. Rethinking atrous con-

volution for semantic image segmentation liang-chieh. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

2018. 1
[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 1
[7] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos

Zafeiriou. Arcface: Additive angular margin loss for deep

face recognition. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

4690–4699, 2019. 5
[8] Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin

Tong. Disentangled and controllable face image generation

via 3d imitative-contrastive learning. In IEEE Computer Vi-

sion and Pattern Recognition, 2020. 2, 4, 5
[9] WA Falcon and .al. Pytorch lightning. GitHub. Note:

https://github.com/PyTorchLightning/pytorch-lightning, 3,

2019. 1
[10] Thomas Gerig, Andreas Morel-Forster, Clemens Blumer,

Bernhard Egger, Marcel Luthi, Sandro Schönborn, and

Thomas Vetter. Morphable face models-an open framework.

In 2018 13th IEEE International Conference on Automatic

Face & Gesture Recognition (FG 2018), pages 75–82. IEEE,

2018. 1, 2, 5
[11] Partha Ghosh, Pravir Singh Gupta, Roy Uziel, Anurag Ran-

jan, Michael J. Black, and Timo Bolkart. GIF: Generative

interpretable faces. In International Conference on 3D Vi-

sion (3DV), 2020. 2, 4, 5
[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In Isabelle Guyon, Ulrike von Luxburg, Samy Ben-

gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,

and Roman Garnett, editors, Advances in Neural Informa-

tion Processing Systems 30: Annual Conference on Neural

Information Processing Systems 2017, December 4-9, 2017,

Long Beach, CA, USA, pages 6626–6637, 2017. 5, 7
[13] Sergey Ioffe and Christian Szegedy. Batch normalization:

Figure 12. Additional results for different yaw angles. Our method preserves the identity very well even for very strong head rotations.

Accelerating deep network training by reducing internal co-

variate shift. In International conference on machine learn-

ing, pages 448–456. PMLR, 2015. 1
[14] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Figure 13. Reposing real images. We encode unseen real images and rerender them under new head poses. The latent identity code z is

directly predicted by the encoder without any further optimization. As the encoder was trained as a Variational Auto Encoder [17], the

reconstructions do not perfectly match the original images but they look similar.

Progressive growing of gans for improved quality, stability,

and variation. arXiv preprint arXiv:1710.10196, 2017. 2, 3
[15] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4401–4410, 2019. 1, 2, 3
[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 1
[17] Diederik P. Kingma and Max Welling. Auto-encoding vari-

ational bayes. In Yoshua Bengio and Yann LeCun, editors,

2nd International Conference on Learning Representations,

ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Confer-

ence Track Proceedings, 2014. 10
[18] Marek Kowalski, Stephan J. Garbin, Virginia Estellers,

Tadas Baltrušaitis, Matthew Johnson, and Jamie Shotton.

Config: Controllable neural face image generation. In Eu-

ropean Conference on Computer Vision (ECCV), 2020. 2, 4,

5
[19] Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.

Maskgan: Towards diverse and interactive facial image ma-

nipulation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 5549–

5558, 2020. 1
[20] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris Mc-

Clanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-

Ling Chang, Ming Guang Yong, Juhyun Lee, et al. Medi-

apipe: A framework for building perception pipelines. arXiv

preprint arXiv:1906.08172, 2019. 2, 3
[21] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan

Zhu. Semantic image synthesis with spatially-adaptive nor-

malization. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 2337–

Figure 14. Limitations. In the current implementation, objects in

the face region such as glasses are synthesized as part of the face

texture. When reposing such an image, the object gets distorted by

perspective projection because it has no consistent geometry—it is

simply projected on the surface of the face. This could potentially

be mitigated by using explicit 3D geometry and a corresponding

UV parameterization for such objects.

Layer #Params Output Shape

Conv2d 1.7 K [64, 256, 256]

MaxPool2d 0 [64, 256, 256]

4× Conv2d 36.9 K [64, 256, 256]

Conv2d 73.7 K [128, 128, 128]

Conv2d 147 K [128, 128, 128]

Conv2d 8.2 K [128, 128, 128]

2× Conv2d 147 K [128, 128, 128]

Conv2d 294 K [256, 64, 64]

Conv2d 589 K [256, 64, 64]

Conv2d 32.8 K [256, 64, 64]

2× Conv2d 589 K [256, 64, 64]

Conv2d 1.2 M [512, 32, 32]

Conv2d 2.4 M [512, 32, 32]

Conv2d 131 K [512, 32, 32]

2× Conv2d 2.4 M [512, 32, 32]

AdaptiveAvgPool2d 0 [512, 1, 1]

2× Linear 131K [256]

Total 11.2 M µz: [256]; σ2

z : [256]

Table 4. Encoder architecture. We report the parametric and pool-

ing layers with their number of parameters and output shape (num-

ber of channels, height, width). The outputs of this network are the

parameters of the latent distribution, consisting of a mean vector

µz ∈ R
256 and its diagonal covariance in the shape of a vector

σ
2

z ∈ R
256. For brevity, we omit activations (ReLU) and batch

normalization. The output shapes do not contain a batch dimen-

sion.

2346, 2019. 1
[22] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-

lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia

Gkioxari. Accelerating 3d deep learning with pytorch3d.

arXiv:2007.08501, 2020. 1

Layer #Params Output Shape

Conv2d 2.4 M [512, 4, 4]

Conv2d 1.2 M [256, 8, 8]

Conv2d 131 K [256, 8, 8]

4× Conv2d 589 K [256, 8, 8]

Conv2d 589 K [256, 16, 16]

Conv2d 65.5 K [256, 16, 16]

3× Conv2d 589 K [256, 16, 16]

Conv2d 589 K [256, 32, 32]

Conv2d 65.5 K [256, 32, 32]

3× Conv2d 589 K [256, 32, 32]

Conv2d 294 K [128, 64, 64]

Conv2d 32.8 K [128, 64, 64]

3× Conv2d 147 K [128, 64, 64]

Conv2d 73.7 K [64, 128, 128]

Conv2d 8.2 K [64, 128, 128]

3× Conv2d 36.9 K [64, 128, 128]

Conv2d 36.9 K [64, 256, 256]

Conv2d 4.1 K [64, 256, 256]

2× Conv2d 36.9 K [64, 256, 256]

Conv2d 9.2 K [16, 256, 256]

Total 12.4 M [16, 256, 256]

Table 5. Texture decoder architecture. We report the convolutional

layers with their number of parameters and output shape (channels,

height, width). For brevity, we omit activations (ReLU) and batch

normalization. Please note that the output shapes do not contain a

batch dimension.

[23] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition. In In-

ternational Conference on Learning Representations (ICLR),

2015. 1
[24] Justus Thies, Mohamed Elgharib, Ayush Tewari, Christian

Theobalt, and Matthias Nießner. Neural voice puppetry:

Audio-driven facial reenactment. In European Conference

on Computer Vision, pages 716–731. Springer, 2020. 1
[25] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-

ferred neural rendering: Image synthesis using neural tex-

tures. ACM Transactions on Graphics (TOG), 38(4):1–12,

2019. 1
[26] Tarun Yenamandra, Ayush Tewari, Florian Bernard, Hans-

Peter Seidel, Mohamed Elgharib, Daniel Cremers, and

Christian Theobalt. i3dmm: Deep implicit 3d morphable

model of human heads. arXiv preprint arXiv:2011.14143,

2020. 6
[27] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated

residual networks. In Computer Vision and Pattern Recogni-

tion (CVPR), 2017. 1
[28] Yu Yu, Kenneth Alberto Funes Mora, and Jean-Marc

Odobez. Robust and accurate 3d head pose estimation

through 3dmm and online head model reconstruction. In

2017 12th ieee international conference on automatic face

& gesture recognition (fg 2017), pages 711–718. Ieee, 2017.

2
[29] Xucong Zhang, Seonwook Park, Thabo Beeler, Derek

Figure 15. Comparison with state-of-the-art methods for head pose rotations around the vertical axis.

Figure 16. Comparison with state-of-the-art methods for head pose rotations around the horizontal axis.

Figure 17. Ablation study visualizations. A model trained with-

out any augmentations tends to misplace features where no 3D

geometries are available. This can yield unrealistic shapes in the

exterior region or artifacts (row 1). Low-dimensional textures pro-

duce blurred out images (row 2). Using a loss that enforces RGB

in the first three texture channels yields unrealistic colors in the

output (row 3 and 4).

Bradley, Siyu Tang, and Otmar Hilliges. Eth-xgaze: A large

scale dataset for gaze estimation under extreme head pose

Layer #Params Output Shape

Conv2d 2.4 M [512, 4, 4]

Conv2d 2.4 M [512, 8, 8]

Conv2d 262 K [512, 8, 8]

3× Conv2d 2.4 M [512, 8, 8]

Conv2d 1.2 M [256, 16, 16]

Conv2d 131 K [256, 16, 16]

Conv2d 626 K [256, 16, 16]

Conv2d 589 K [256, 16, 16]

Conv2d 626 K [256, 16, 16]

Conv2d 589 K [256, 32, 32]

Conv2d 65.5 K [256, 32, 32]

Conv2d 626 K [256, 32, 32]

Conv2d 589 K [256, 32, 32]

Conv2d 626 K [256, 32, 32]

Conv2d 294 K [128, 64, 64]

Conv2d 32.8 K [128, 64, 64]

Conv2d 165 K [128, 64, 64]

Conv2d 147 K [128, 64, 64]

Conv2d 165 K [128, 64, 64]

Conv2d 73.7 K [64, 128, 128]

Conv2d 8.2 K [64, 128, 128]

Conv2d 46.1 K [64, 128, 128]

Conv2d 36.9 K [64, 128, 128]

Conv2d 46.1 K [64, 128, 128]

Conv2d 36.9 K [64, 256, 256]

Conv2d 4.1 K [64, 256, 256]

Conv2d 46.1 K [64, 256, 256]

Conv2d 36.9 K [64, 256, 256]

Conv2d 9.2 K [16, 256, 256]

Total 19.2 M [16, 256, 256]

Table 6. Additive decoder architecture. We report the convolu-

tional layers with their number of parameters and output shape

(channels, height, width). For brevity, we omit activations (ReLU)

and batch normalization. Please note that the output shapes do not

contain a batch dimension.

and gaze variation. In European Conference on Computer

Vision, pages 365–381. Springer, 2020. 5

Layer #Params Output Shape

Conv2d 18.5 K [64, 256, 256]

Conv2d 36.9 K [64, 256, 256]

MaxPool2d 0 [64, 128, 128]

Conv2d 73.9 K [128, 128, 128]

Conv2d 147 K [128, 128, 128]

MaxPool2d 0 [128, 64, 64]

Conv2d 295 K [256, 64, 64]

Conv2d 590 K [256, 64, 64]

MaxPool2d 0 [256, 32, 32]

Conv2d 1.2 M [512, 32, 32]

Conv2d 2.4 M [512, 32, 32]

MaxPool2d 0 [512, 16, 16]

Conv2d 4.7 M [1024, 16, 16]

Conv2d 9.4 M [1024, 16, 16]

ConvTranspose2d 2.1 M [512, 32, 32]

Conv2d 4.7 M [512, 32, 32]

Conv2d 2.4 M [512, 32, 32]

ConvTranspose2d 524 K [256, 64, 64]

Conv2d 1.2 M [256, 64, 64]

Conv2d 590 K [256, 64, 64]

ConvTranspose2d 131 K [128, 128, 128]

Conv2d 295 K [128, 128, 128]

Conv2d 147 K [128, 128, 128]

ConvTranspose2d 32.8 K [64, 256, 256]

Conv2d 73.8 K [64, 256, 256]

Conv2d 36.9 K [64, 256, 256]

Conv2d 260 [4, 256, 256]

Total 31.1 M [4, 256, 256]

Table 7. Feature2Image Architecture. We report its layers with

their number of parameters and output shape (channels, height,

width). For brevity, we omit activations (ReLU) and batch normal-

ization. Please note that the output shapes do not contain a batch

dimension. The final output shape contains three channels for the

RGB output image and one channel for the predicted foreground

mask.

Figure 18. User study examples (photorealism task). Participants

compare randomly selected pairs of images from each method.

For a fair comparison, each such pair contains images in the same

randomly-selected pose.

Figure 19. User study examples (consistency task). We showed a randomly selected set of 3 images for the evaluated head poses and

asked the participants to choose the set where the person was represented more consistently. The sequence of questions and options were

randomized and the labels were not shown to the user.

